
1

Vineet Sharda

Threading
Multithreading sounds like turbo
charging. Does it speed up a program?
In the modern computers with multiple cores, multithreading does

speed up a program, as the threads are picked up by different cores.

Nonetheless, speeding up a program is not the primary purpose of

multithreading. Additionally, multithreading will slow down the actual

program execution time because the overhead of creating, registering

and maintaining a separate thread and also jumping between the

threads will add to the execution time.

Then why do we use multithreading?
We use multithreading when both of the following conditions are true:

1. We anticipate that a function is going to take a long time to execute.

Let’s call it LengthyFunction().

2. We want the main program to remain responsive to requests even

while LengthyFunction() is executing.

How do we use multithreading?
Multithreading involves just 2 steps:

1. Make a Thread instance out of LengthyFunction, say Thr.

2. Start the Thr.

Sample Code

Namespace needed for threading:
using System.Threading;

private void LengthyFunctionThroughAThread() {
 // Step 1
 Thread Thr = new Thread(LengthyFunction);
 // Step 2
 thr.Start();

2

Vineet Sharda

}

Believe it or not, that is all that is needed to make a program

multithreaded.

Concept
When a thread is created, as in step 1, the CPU creates a separate area for

executing the function.

When the thread is started, as in step 2, the CPU gives half the process-

allotted-time to the main program and half to the thread. The process-

allotted-time itself is in milliseconds, so that half the time away from the

main program is not palpable and therefore, the main program appears

responsive.

Note: The above process is described to explain the concept. Nevertheless, it is not
very far from the actual execution process.

The CPU takes only a few nanoseconds to create a thread, or manage a

list of threads or jump between the threads. Let us magnify these times

to 1 second each, in order to understand the concept better. Also, let’s

assume LengthyFunction takes 10 seconds to execute normally. In this

case, this is how a non-threaded and a threaded operation will look like

on a single-processor machine:

Non-threaded operation

Time Execution

0:00 The main program is available.

0:01 LengthyFunction() is called.

0:01 LengthyFunction() starts running.

0:01 to 0:11 The main program is not available for any other function.

0:11 LengthyFunction() finishes running.

0:11
onwards

The main program is responsive/available after the LengthyFunction()
has finished running.

Threaded operation

Time Execution on main program Execution on thread

0:00 The main program is available.

0:01 LengthyFunctionThroughAThread()

is called.

3

Vineet Sharda

0:02 A thread for LengthyFunction()
 is created.

Separate thread created.

0:02 The Start() method is called on
 the thread.

LengthyFunction() starts
running.

0:02
onwards

The main program is responsive /
available.

0:02 to
0:23

The CPU gives half the time allotted
to the process, to the main program.

Managing the time between the
threads delays the execution time of
LengthyFunction().

LengthyFunction() is running in
a separate thread.

The CPU gives half the time
allotted to the process, to the
LengthyFunction() thread.

0:23
LengthyFunction() finishes
running.

0:23
onwards

The CPU gives the time allotted to the
process, completely to the main
program.

So, although creating a separate thread delayed the completion of

LengthyFunction(), the main program remains responsive throughout

(available to be acted upon). Obviously, a user able to work with a

responsive application and getting the result of his action in 22 seconds

will be happier than a user forced to look at a frozen application for 10

seconds.

Once the scenario of multiple processors kicks in, the multithreaded

application may take less than 13 seconds to get the complete processing

time for the main program. But as mentioned earlier, multiprocessing is

not the focus of this chapter.

Restrictions
A function can be called via a thread only if it conforms to one of the

following two delegates:

Thread delegates

Delegate Signature

ThreadStart void FunctionName ()

ParameterizedThreadStart void FunctionName (object Obj)

As a matter of fact, the Step 1 in the sample code is a shortcut for:

ThreadStart DelegateForFunc = new ThreadStart(LengthyFunction);
Thread Thr = new Thread(DelegateForFunc);

4

Vineet Sharda

Parameters
Well, a function usually does something based on some parameters. It

usually gets a parameter from either

1. a field or property of its class,

2. or its argument

Obviously, the use of a class field does not call for something special in

the creation of a thread. Its use is inherent in the function.

How is an argument sent to a threaded function?
The following two observations will make the process clear.

1. As you can see from the table of the Threaded operation, when a

thread is created, the underlying function is just marked for

execution at a separate place. The function actually executes only

when the Start() method is called on the Thread. Therefore, the

argument to a function is passed via the Start() method.

2. Just as creating the thread for a function which runs without a

parameter uses ThreadStart delegate, the thread for a function which

runs with a parameter uses the ParameterizedThreadStart delegate.

Looking at the signature of this delegate, we make two sub-

observations:

a) The underlying function can only have one parameter.

b) This parameter can only be of type object. So, if the function

expects an int or any other type, it must cast this parameter to

that type in its body and then work with it.

These observations have been made only to clarify the concept. As far as

the code is concerned, there is not much difference as we can see by

comparing the following sample code with the basic one.

Sample Code
private void LengthyFuncWithParamThroughAThread() {
 // Step 1
 Thread Thr = new Thread(LengthyFuncWithParam);
 // Step 2 – Pass the argument
 Thr.Start("dummy");
}

private void LengthyFuncWithParam(object Obj) {
 // Cast the parameter into the type that is required

5

Vineet Sharda

 string Param = (string) Obj;
 // Use the parameter
}

Multiple Parameters
The restriction that only one parameter can be passed to a function

called via a thread poses a challenge when we want to pass multiple

parameters. We circumvent this restriction with one of the following

methods.

Method 1: Class fields or properties

This is a no-brainer. We simply add as many fields or properties to the

class as the parameters that we expect to send to the function. We set

these fields before calling the Start() method of the thread.

Sample code
// Class fields
private string sChk;
private int iStat;

private void LengthyFunc_ParamsFromFieldsThroughAThread() {
 // Step 1
 Thread Thr = new Thread(LengthyFunc_ParamsFromFields);
 // Argument Step – Set the class fields
 this.sChk = "LengthyFunc_ParamsFromFields";
 this.iStat = 1;
 // Step 2
 Thr.Start();
}

private void LengthyFunc_ParamsFromFields() {
 // Use the class fields as parameters
 string ParamCheck = this.sChk;
 int ParamStatus = this.iStat;
 // Use the parameters
}

Note: The restriction that the parameter of the function to be used via a thread is of
type object can be used as a boon. Basically, this restriction means that we
can pass any argument to the function since every type inherits from object.
Since the value-types are boxed inherently on being used as an object, even
they do not pose any challenge. We will use this boon in methods 2 and 3.

6

Vineet Sharda

Method 2: Separate class for parameters

In this method, we first create a class and make the fields or properties

of this class corresponding to the parameters that the function requires.

Before calling the Start() method on the thread, instantiate this class, set

the fields or properties of this instance and pass this instance to the

Start() method. In the threaded function, we cast this parameter to this

class, thus using its fields and properties as expected parameters.

Sample code
// A separate class containing the parameters
public class LengthyFunctionParams {
 public string Check;
 public int Status;
}

private void LengthyFunc_ParamsFromClassThroughAThread() {
 // Step 1
 Thread Thr = new Thread(LengthyFunc_ParamsFromClass);
 // Argument Step – Instantiate the separate class
 LengthyFunctionParams LFP = new LengthyFunctionParams();
 LFP.Check = "LengthyFunc_ParamsFromClassThroughAThread";
 LFP.Status = 10;
 // Step 2 – Pass the argument
 Thr.Start(LFP);
}

private void LengthyFunc_ParamsFromClass(object Obj) {
 // Cast the Obj parameter as the separate class
 LengthyFunctionParams LFP = (LengthyFunctionParams) Obj;
 // Use the fields/properties of Obj to obtain the parameters
 string ParamCheck = LFP.Check;
 int ParamStatus = LFP.Status;
 // Use the parameters
}

Method 3: Parameters in a collection or array

In this method, we use any collection (Hashtable, ArrayList, DataTable,

DataSet or even the generic HashSet, Dictionary, etc.) or array.

Basically, we keep inserting parameters into this collection and pass this

collection to the Start() method. In the threaded function, we cast the

parameter to the chosen collection type. Then, we cast them into the

appropriate types and then work with them.

Sample code
private void LengthyFunc_ParamsFromIEnumerableThroughAThread() {
 // Step 1

7

Vineet Sharda

 Thread Thr = new Thread(LengthyFunc_ParamsFromIEnumerable);
 // Argument Step – Fill up any IEnumerable
 System.Collections.Hashtable HTblArgs =
 new System.Collections.Hashtable();
 HTblArgs.Add("Check", "LengthyFunc_ParamsFromIEnumerable");
 HTblArgs.Add("Status", 100);
 // Step 2 – Pass the argument
 Thr.Start(HTblArgs);
}

private void LengthyFunc_ParamsFromIEnumerable(object Obj) {
 // Cast the Obj parameter as the expected IEnumerable
 System.Collections.Hashtable HTblParams =
 (System.Collections.Hashtable) Obj;
 // Retrieve the parameters from the IEnumerable
 string ParamCheck = (string) HTblParams["Check"];
 int ParamStatus = (int) HTblParams["Status"];
 // Use the parameters
}

Return Variables
You may want a threaded function to return something once it finishes

its task. Since the delegates available to us return void, how do we return

something? The possible solutions are the same as for multiple

parameters:

1. Use the class fields or properties as return variables, or

2. Use an instance of a separate class having fields or properties which

can be used as return variables, or

3. Add return variables to a passed collection.

In other words, nothing special is required.

Not so fast
Observe that the above possible solutions are the same as returning

something from a function which returns void. Nevertheless,

multithreading poses an issue different from a void-returning-function.

In a non-threaded operation, the main program waits till the called

function finishes and then works with the return variables.

In the threaded operation, on the other hand, the main program can start

working on the return variables as soon as the function has been called

via a thread. This is not desirable. Most likely, the threaded function is

still working on the return variables. If it were quick to return these

variables, we would not have to use threading at the first place.

8

Vineet Sharda

To work around this situation, we use one of the following two

methods.

Method 1: WaitHandle

Basically: wait for a signal from the threaded function.

Here are the steps we follow:

a) Create a class-level instance of one of the many child classes of

WaitHandle. These classes act as signals and provide us with at least

one method to give the ON signal and one method to give the OFF

signal. In the sample code, we create an instance of the child class

AutoResetEvent. Let’s call it ARE.

b) Set the signal ARE to OFF before calling the threaded function. In case

of an AutoResetEvent, it is done by calling the Reset method.

c) In the main program, where we want to work with the return

variables, wait for the signal to turn ON. This is done by using the

WaitOne method.

d) In the threaded function, set the signal to ON when the function is

ready to return the variables.

Sample Code
// Class Fields
// Parameters
private string sChk;
private int iStat;
// Return variables
private string sRet;
// Signal
private AutoResetEvent ARE;

private void LengthyFunc_WaitHandleThr() {
 // Step 1
 Thread Thr = new Thread(LengthyFunc_WaitHandle);
 // Argument Step
 this.sChk = "LengthyFunc_WaitHandleThr";
 this.iStat = 100;
 // Step a) Create the signal
 this.ARE = new AutoResetEvent(false);
 // Step b) Signal OFF
 this.ARE.Reset();
 // Step 2
 Thr.Start();
}

// This function can be called at any time
private void UseReturnVariables_WaitHandle() {

9

Vineet Sharda

 // Step c) Wait for the signal to turn ON
 this.ARE.WaitOne();
 // Use the return variable(s)
 UseReturnVariables(this.sRet);
}

private void LengthyFunc_WaitHandle(object Obj) {
 // Use the parameter(s) and set the return variable(s)
 this.sRet = this.sChk + " returns " + 2 * this.iStat;
 // Do other things which make the function lengthy
 //Thread.Sleep(10000);
 // Step d) Signal ON
 this.ARE.Set();
}

Method 2: Callback

Basically: make the threaded function execute the function which needs to use

the return variables. This involves a few steps:

a) Create a function that will use the return variables and make the

return variables as the parameters of the function. Let’s call it

UseReturnVariables. This step is not shown in the Sample Code.

b) Create a delegate with the same signature as the UseReturnVariables.

c) As one of the arguments to the threaded function, pass the function

via the delegate. We have done this using the class field.

d) In the threaded function, retrieve the delegate, just as any

parameter.

e) At the end of the function, invoke the delegate, passing the return

values as its arguments.

Sample Code
// Step b) Delegate with the expected return values as parameters
// inside or outside of the class
public delegate void ReturnVarsHandler(string sReturn);

// Class Fields
// Parameters
private string sChk;
private int iStat;
// Return variables
private string sRet;
// Delegate to the function which uses the return variables
ReturnVarsHandler ArgFunc;

private void LengthyFunc_CallbackThr() {
 // Step 1
 Thread Thr = new Thread(LengthyFunc_Callback);
 // Argument Step

10

Vineet Sharda

 this.sChk = "LengthyFunc_CallbackThr";
 this.iStat = 100;
 // Step c) Setup the delegate to the function
 // which uses the return variables
 // just like setting up other arguments
 this.ArgFunc = new ReturnVarsHandler(UseReturnVariables);
 // Step 2
 Thr.Start();
}

private void LengthyFunc_Callback(object Obj) {
 // Use the parameter(s) and set the return variable(s)
 string sReturn = this.sChk + " returns " + 2 * this.iStat;
 // Do other things which make the function lengthy
 //Thread.Sleep(10000);
 // Steps d and e) Retrieve the callback function
 // and invoke it with the return value(s)
 this.Invoke(this.ArgFunc, new object[] { sReturn });
}

Note: The delegate has not been called directly as this.ArgFunc(sReturn);. It
has been called using the Invoke function. Basically, introducing the Invoke
runs the underlying function on the main thread. Without Invoke, we will not
be returning the variables but only using them. If we did not want to return the
variables, we might as well have called the function UseReturnVariables
directly.

Why go back?
A natural question that now arises is that why should we wait for the

thread to finish when the whole point of multithreading is the freedom

from this wait. There are various scenarios in which this is desirable:

1. The function that started the thread is different from the function

that expects the return variables from the thread. The second

function may be called when a user is finished working on other

areas of the application and is now ready to wait for the return

variables. We will see an example in the section Concurrency.

2. The main function itself may be a long running program and by the

time it finishes, it wants the return variables from the thread. To an

experienced developer, this would make sense when the threaded

function mainly waits for (a) response(s) from some outside

application(s).

11

Vineet Sharda

Concurrency
In the section Return Variables, we saw the issue of a parent and a child

thread concurrently trying to work with the return variable. We now

generalize the issue to multiple threads concurrently trying to work on

the same variable(s). This is called Concurrency.

We look at the two commonly used solutions to this issue: lock and

ReaderWriterLockAsync.

Lock
Let’s say a variable is to be used by various threads. In all the functions,

just before this variable is going to be used, we lock it. When the

function has finished using the variable, it unlocks it.

Initially, a thread comes to one such function; it requests the CLR to lock

this variable for it. The CLR does that, and the thread starts working

with the variable. While the first thread is still working with this

variable, another thread tries to use the same variable.

The second thread may or may not have the same underlying function.

Since we have followed the rule of applying the lock to the variable

before using it, in all the functions, this thread requests the CLR to lock

the variable for it. But since the variable is already locked, the CLR is

unable to do so and makes that thread stand still at that point of its

function. When the first thread finishes its work with the shared variable

and requests the CLR to unlock it, the CLR does so. Then, the CLR locks

the variable for the second thread and it continues it execution. Similar

to the first thread, once the second thread finishes working with the

variable, it requests the CLR to unlock it, to which the CLR obliges.

Method

We lock a variable by using the keyword lock, followed by putting that

variable in parentheses. This is followed by a section of code in braces.

The closing brace automatically unlocks the variable.

In the following sample code, three functions try to work on two

datatables. All these functions are called via threads, so we may have the

issue of concurrency. The lock mechanism solves this for us, as

explained above.

12

Vineet Sharda

Sample Code
// Class fields
DataTable DTblWork, DTblWorkDone;
// Class constructor
public frmSync() {
 InitializeComponent();
 this.DTblWork = new DataTable();
 this.DTblWork.Columns.Add("ID", Type.GetType("System.String"));
 this.DTblWork.Columns.Add(
 "WorkStarted", Type.GetType("System.DateTime"));
 this.DTblWorkDone = DTblWork.Clone();
 this.DTblWorkDone.Columns.Add(
 "WorkFinished", Type.GetType("System.DateTime")
);
}

private void MimicGettingWorkRequests() {
 while (true) {
 // Mimic that a work request came in at a random time
 Thread.Sleep((new Random()).Next(2000) + 1000);
 string sDt = DateTime.Now.ToString("MMyyddmmHHss");
 lock (this.DTblWork) {
 this.DTblWork.Rows.Add(sDt, DateTime.Now);
 } // End of lock (this.DTblWork)
 }
}

private void WorkOnRequests() {
 while (true) {
 lock (this.DTblWork) {
 if (this.DTblWork.Rows.Count > 0) {
 DataRow DRowWork = DTblWork.Rows[0];
 // Say the work takes 3 seconds to complete
 Thread.Sleep(3000);
 lock (this.DTblWorkDone) {
 this.DTblWorkDone.Rows.Add(
 DRowWork["ID"], DRowWork["WorkStarted"],
 DateTime.Now
);
 } // End of lock (this.DTblWorkDone)
 this.DRowWork.Delete();
 }
 } // End of lock (this.DTblWork)
 }
}

Note: Make the IsBackground property of the threads true

Because of the current workload, the work on teaching modules has

been suspended indefinitely. This particular teaching module is

incomplete as well.

