
1

Vineet Sharda

Serialization
What is Serialization?
Serialization is nothing but storing of objects in files (or any other

stream).

Why do we need it? Why can we not store objects
in a database?
Serialization is a quick and efficient way of storing objects. There is no

need to establish a connection to a database for such comparatively

trivial objects.

These objects can then be acted upon by the same or other application(s).

The files can be copied by any application to any other machine with

ease. It is comparatively simple and fast than getting the data by

establishing a connection with the database. The database approach will

still involve either writing the For XML SQL or recreating the objects from

the field values of each row.

A decision to store objects on the database may involve creation of

appropriate schemas. Any change will be even more maintenance

intensive. With serialization, the schema need not be decided in advance

and schemas can be created, edited and discovered with simple program

structures.

What do we need to do in order to
serialize objects?
The definition Serialization is nothing but storing of objects in files tells us

that all we need is:

1. An Object to be serialized.

2. A FileStream to the file where the object will be stored (any other

stream will work equally well).

3. An instance of a class which will do the action of storing.

2

Vineet Sharda

4. Storing.

In terms of code, this is how we do it:

Step 1 involves 3 sub steps:

a) Mark the class of the object to be serialized, with the [Serializable]

attribute.

b) Create a parameterless constructor of this class.

c) Create the object.

Step 2 is a simple file handling mechanism.

Step 3 involves creating an instance of a class called BinaryFormatter, say

Formatter.

Step 4 involves calling the Serialize method of the Formatter.

Sample code

Class:
// Step 1a
[Serializable]
public class ClsSerialize
{
// Step 1b – optional if there is no other constructor
 public ClsSerialize() { }
 public string sName;
 public int iDependents;
 private int iAge;
 public int Age
 {
 get{return this.iAge;}
 set{this.iAge = value;}
 }
}

Namespace needed by the client code:
// Namespace containing the BinaryFormatter
using System.Runtime.Serialization.Formatters.Binary;

Client code:
// Step 1c
ClsSerialize oSerIn = new ClsSerialize();
oSerIn.sName = "Aaron";
oSerIn.iDependents = 3;
oSerIn.Age = 32;
// Step 2
string sFile = @"C:/Temp/" + oSerIn.sName + ".bin";
System.IO.FileStream fsOut;
try{

3

Vineet Sharda

 fsOut = System.IO.File.OpenWrite(sFile);
}
catch{ return; }
// Step 3
BinaryFormatter Formatter = new BinaryFormatter();
// Step 4
try{
 Formatter.Serialize(fsOut, oSerIn);
}
finally{ fsOut.Close(); }

Note: The output file stream parameter comes before the input object parameter.

Serialized Output
The serialized output of the above code looks like this.

 ÿÿÿÿ JWinAppSerialization, Version=1.0.0.0, Culture=neutral,
PublicKeyToken=null
WinAppSerialization.ClsSerialize sName
iDependents

iAge
Aaron

As we can see, all the public and private fields show up in the output.

Most of the junk has been replaced by dashes.

How about getting the objects back from these
files?
The first three steps remain almost the same (just keep in mind that now,

we are reading/retrieving instead of writing/storing). In the fourth step,

instead of calling the Serialize method, we call the Deserialize method,

which creates the object for us.

This is how the client code for deserializing will look like:

// Step 2
string sFile = @"C:/Temp/Aaron.bin";
System.IO.FileStream fsIn;
try{
 fsIn = System.IO.File.OpenRead(sFile);
}
catch { return; }
// Step 3
BinaryFormatter Formatter = new BinaryFormatter();
// Step 4
ClsSerialize oSerOut;
try{
 oSerOut = (ClsSerialize)Formatter.Deserialize(fsIn);

4

Vineet Sharda

}
finally { fsIn.Close(); }

See the convenience: no hassle of identifying the table schema and then

creating the object accordingly. In other words, the class knows how to

get itself back. Programmatically doing this with a class will involve a

sophisticated helper class. Microsoft has already done this for us!

Soap Formatting
If we want to make the serialized output human readable, pass through

firewalls and be used universally by applications, we should use the

SoapFormatter class instead of the BinaryFormatter. As can be expected,

this class is in the System.Runtime.Serialization.Formatters.Soap

namespace.

Note: The mscorlib.dll is loaded by the Visual Studio when a project is created. This
assembly contains the
System.Runtime.Serialization.Formatters.Binary namespace, which
contains the BinaryFormatter class. In order to work with the
SoapFormatter class, we need to add a reference to the
System.Runtime.Serialization.Formatters.Soap assembly which contains a
namespace of the same name. This namespace, in turn, contains the
SoapFormatter class.

Advanced Scenarios

Scenario 1: Prevent serialization of a field

Let’s say, we have a password or a Session ID field which is retrieved

from a database or a server when the object is created, and then used for

the lifetime of the object. We do not want to store this field in the

serialized file.

In this case, we mark it with the [NonSerialized] attribute.

Scenario 2: Serializing an array or any collection

All the Microsoft classes are Serializable. This includes the array and all

the collections. So, nothing more than the 4 basic steps of serialization

needs to be done.

Scenario 3: A field of a user-defined type

5

Vineet Sharda

If a field of the class to be serialized is of a user-defined type, then, at the

time of serialization, an error will be thrown. This error is the same as

the one that the runtime will throw when we try to serialize an object

when its class is not marked with the [Serializable] attribute or its class

does not have a parameterless constructor. Basically, the runtime simply

cascades down the object and its constituent objects to serialize the entire

object. If any object in this graph is not serializable, an error is thrown.

As you might have guessed, all that one has to do in this case is to

1. Mark the class of the field with the [Serializable] attribute.

2. Create a parameterless constructor of this class.

Scenario 4: An enum field

Since underlying type of enum is int, nothing needs to be done.

Scenario 5: Polymorphism

An object accessed as its parent class instance and then serialized still

needs to have its class marked [Serializable] and must have a

parameterless constructor. The process of serialization simply looks at the

serializability of the object and does not follow the inheritance rule.

Tip: If you try combining a few scenarios, you might figure out new exam questions
yourself!! Don’t hesitate in doing so. It will be a very simple exercise. A few such
scenarios are given below.

Scenario 6: Serializing an array or collection of a user-defined type

This scenario is a combination of Scenarios 2 and 3. So, the only thing to

be done in this case is to mark the class of which the object is the array as

[Serializable] and make a parameterless constructor for the same.

Scenario 7: An array field

Almost like Scenario 2 – therefore – do nothing special.

Scenario 8: A field is an array of user-defined elements

Almost like Scenario 6 – therefore - mark the class of which the field is

the array as [Serializable] and make a parameterless constructor for the

same.

Scenario 9: Polymorphism over field

6

Vineet Sharda

Combination of Scenarios 3 and 5 – child class should be marked as

[Serializable] and have a parameterless constructor.

Scenario 10: Polymorphism over an array field

Combination of Scenarios 5 and 7 – child class should be marked as

[Serializable] and have a parameterless constructor.

Custom Serialization

What constitutes custom serialization?
We might need to customize Serialization for any of the following

reasons:

1. To avoid marking fields with serialization attribute(s). In other

words, to move from declarative customization to programmatic

customization.

2. To avoid having to make classes of constituent elements or their

subclasses serializable.

3. To format the serialized output in any way we want.

4. To customize serialization based on user input.

5. To customize serialization based on the streaming context.

6. To perform any action before or after serialization.

Method 1: Complete control over serialization
There is a way to completely control the output of the serialization, and

thereby cover the first five aspects of customization. This is done by

making the [Serializable] class implement the ISerializable interface. As

can be expected, this interface entails:

1. Implementing the method GetObjectData which overrides the

serialization performed by a formatter.

2. Implementing a special constructor which overrides the

deserialization performed by a formatter.

Note: The class implementing the ISerializable interface should still be marked as
[Serializable]. Otherwise, the BinaryFormatter or the SoapFormatter will not
serialize its instance.

7

Vineet Sharda

Let’s make a few changes to our earlier code, to get more control over

the serialization. Also, this time, let’s use the SoapFormatter since the

output in the Soap format will be easier to analyze.

Sample code

Namespace needed by the class:
//Namespace containing SerializationInfo and StreamingContext
using System.Runtime.Serialization;

Class:
// Step 1a
[Serializable]
public class ClsSerialize:ISerializable
{
// Step 1b – special constructor this time
 public ClsSerialize() { }
 public ClsSerialize(
 SerializationInfo info, StreamingContext context
){ // implementation discussed later }
// Step 5 – new step
 public void GetObjectData(
 SerializationInfo info, StreamingContext context
){
 // a) Output the data in any format
 info.AddValue("Name", this.sName);
 info.AddValue(
 "NumberOfDependents", this.iDependents
);
 // b) Make use of the client input
 object oUserData = context.Context;
 if (oUserData != null){
 info.AddValue("CompanyName", (string)oUserData);
 }
 // c) Make use of the StreamingContextStates sent by the client
 if(
 (
 ((int)context.State) &
 ((int)StreamingContextStates.CrossMachine)
) != 0
){
 info.AddValue("Machine", Environment.MachineName);
 }
 }
 // The rest of the class implementation remains the same
}

Include reference and namespaces needed by the client code:
// Add a reference to the
// "System.Runtime.Serialization.Formatters.Soap.dll"
// Namespace containing the SoapFormatter

8

Vineet Sharda

using System.Runtime.Serialization.Formatters.Soap;
//Namespace containing SerializationInfo and StreamingContext
using System.Runtime.Serialization;

Client code:
// Steps 1c
// Initialize the object to be serialized - same as before
// Step 2
// Open the file stream - same as before
// Step 3
SoapFormatter Formatter = new SoapFormatter();
// Step 3b – make use of customized Serialization
// Pass
// (i) StreamingContextStates
// (ii) Any object that GetObjectData() can process
StreamingContextStates stt =
 StreamingContextStates.Persistence | StreamingContextStates.Other;
Formatter.Context = new StreamingContext(stt, "NewIdea Inc");
// Step 4
// Serialize – same as before

Code analysis

Class

1. The two additions to the class, as necessitated by the ISerializable

interface, are the GetObjectData function for serialization and a new

constructor for deserialization (explained in the Custom

Deserialization section).

2. A complete control is demonstrated by the GetObjectData function

implementation.

a) We pass those fields to the output that we want.

b) The names of these fields can be anything that we want.

c) If we have a field of user-defined type, then we do not have to take

care of its polymorphism since output will only be read off the fields

/ properties / functions of the superclass (the subclass is not known

to the serializable class). If we pass a field of user-defined type

directly to the info.AddValue, then the various scenarios of arrays and

polymorphism remain in effect.

d) Polymorphism related to serializing an array follows simple

polymorphism principles.

In other words, all the advanced scenarios, discussed earlier, can be

easily covered with this level of control. All this is done simply by using

the AddValue method of the SerializationInfo parameter.

9

Vineet Sharda

3. This mechanism gives us two additional levels of control, by

providing the StreamingContext parameter.

a) Using the Context property of this parameter, we can allow the

Formatter on the client side to pass an object (State) to the

serialization process, which we can use. In our sample code, we are

allowing the client to send a string, which we are passing onto the

serialization output ("NewIdea Inc"). We can allow a State of any

type and create a sophisticated code on the basis of this State.

b) The Formatter can specify a combination of its StreamingContextStates

and we can base our output on that, as we have done in step c of the

GetObjectData().

Client

The Formatter can send the StreamingContextStates and its State – both of

which can be used by GetObjectData. The simplest way to accomplish this

is to instantiate a StreamingContext object from these two parameters and

then assigning this instance to the Context property of the Formatter. See

step 3b of the client code.

The next table shows all the available StreamingContextStates. You should

use them to make complete use of Customized Serialization.

Flags of the StreamingContextStates enumeration

Member Description

All The serialized data can be transmitted to or received from any of
the other contexts.

Clone The object graph is being cloned.

CrossAppDomain The source or destination context is a different AppDomain.

CrossMachine The source or destination context is a different computer.

CrossProcess The source or destination context is a different process on the
same computer.

File The source or destination context is a file.

Other The serialization context is unknown.

Persistence The source or destination context is a persisted store - a
database, a file, etc.

Remoting The data is remoted to a context in an unknown location.

10

Vineet Sharda

Serialized Output

The serialized output of the above code looks like the following. Verify if

this is what you expected.

<SOAP-ENV:Envelope xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema" xmlns:SOAP-
ENC="http://schemas.xmlsoap.org/soap/encoding/" xmlns:SOAP-
ENV="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:clr="http://schemas.microsoft.com/soap/encoding/clr/1.0" SOAP-
ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
<SOAP-ENV:Body>
<a1:ClsSerialize id="ref-1"
xmlns:a1="http://schemas.microsoft.com/clr/nsassem/Proj/Proj%2C%20Version
%3D1.0.0.0%2C%20Culture%3Dneutral%2C%20PublicKeyToken%3Dnull">
<Name id="ref-3">Aaron</Name>
<NumberOfDependents>3</NumberOfDependents>
<CompanyName id="ref-4">NewIdea Inc</CompanyName>
</a1:ClsISerialize>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Method 2: Perform actions before or after
serialization
We may want to log somewhere that we are going to serialize an object,

or that we have serialized an object. In this case, we just need to mark

the functions that we want to run before serializing takes place with the

[OnSerializing] attribute and the functions that we want to run after the

serialization finishes with the [OnSerialized] attribute.

Like all eventhandlers, these functions must conform to a signature,

which is:

void Func(StreamingContext context)

The context argument is the same as the one used in the GetObjectData

function. Having learnt about its strength, use it with full ingenuity.

Here are a few interesting flexibility scenarios allowed with regards to

these attributes:

1. They can be applied to any number of functions.

2. The same function can have both the attributes applied to it, as also

the [OnDeserializing] and [OnDeserialized], which are explained in

the Custom Deserialization section.

3. If an attribute is applied to the parent class, then that function runs

before the corresponding function of the child class.

Note: The [OnSerializing], [OnSerialized], [OnDeserializing],

11

Vineet Sharda

[OnDeserialized] attributes only work for a BinaryFormatter and not for a
SoapFormatter.

Custom Deserialization
If we have customized our serialization, we will have to mirror it in our

deserialization as well.

There are 3 methods of accomplishing this.

Method 1: Special Constructor
The special constructor left out in the Custom Serialization section is

implemented here. There will be no change in the client code from the 4

basic steps of deserialization (with a proper Formatter type).

Sample code

Class:
// Step 1a
[Serializable]
public class ClsSerialize:ISerializable
{
// Step 1b – special constructor this time
 public ClsSerialize() { }
 public ClsSerialize(
 SerializationInfo info, StreamingContext context
){
 // (i) Get data from the serialized file
 this.sName = info.GetString("Name");
 this.iDependents = info.GetInt32 ("NumberOfDependents");
 // (ii) Fill up the data which is not expected from the
 // serialized file
 this.iAge = this.GetAgeFromDatabase(this.sName);
 // (iii) Use the extra input given by the serialization client
 try{
 string sCompany = info.GetString("CompanyName");
 // Log somewhere the name of the company which sent this
 // serialized file
 }
 catch (Exception ex) { }
 try{
 string sMachine = info.GetString("Machine");
 // Log somewhere that the serialized file came from some
 // other machine
 }
 catch (Exception ex) { }
 }

 // Helper function

12

Vineet Sharda

 public int GetAgeFromDatabase(string PersonName){
 // Get age for this person from database
 }

Note that the above code is simply a mirror image of the code in

GetObjectData(). Simply by using the GetString(), GetInt32() and other

such functions of the SerializationInfo parameter, the fields of the

instance are created.

Advanced Scenarios

Scenario 1: A field which was not serialized

Populate that field, as you would normally do – just as we have done for

iAge.

Scenario2: Deserializing an array or any collection

As stated for serialization, nothing special to be done.

Scenario 3: An enum field

Since underlying type of enum is int, just use the GetInt32() method.

Scenario 4: A field of a user-defined type

Use the GetValue(string, Type) function. The first parameter is the name

of the tag in the serialized file. The second parameter is the type that we

are expecting. It returns an instance of object type. This instance can be

cast to the type which we are expecting.

Scenarios 5, 6: An array field, polymorphism

Same action as for Scenario 4.

Tip: If you try to combine a few scenarios, as you did in the Advanced Scenarios
section of serialization, you might figure out new exam questions yourself! From
the Scenarios 4, 5 and 6, it might have become clear that all these
combinations will require the same action as explained for Scenario 4.

Method 2: Perform actions before or after
deserialization
This method is same as described in the Perform actions before or after

serialization section, including the note following it. Just replace

[OnSerializing] with [OnDeserializing] and [OnSerialized] with

[OnDeserialized], and vice-versa.

13

Vineet Sharda

Method 3: Perform actions after deserialization
Remember, the [OnDeserializing] and [OnDeserialized] attributes work

only for BinaryFormatter and not for a SoapFormatter. In any case, for

simple actions that a Formatter would like to perform after

deserialization, this method is suitable. All that we have to do is make

the class inherit the IDeserializationCallback interface and implement its

OnDeserialization method. The signature of this method is:

void OnDeserialization(Object sender);

Tip: The IDeserializationCallback.OnDeserialization implementation
executes before the function(s) marked with the [OnDeserialized] attribute

XML Serialization
XML Serialization gives the serialized output in the XML format. The

advantages are the same as for the Soap formatted serialization: human-

readability, passing through firewalls and universal applicability.

There is no difference between the 4 basic steps of Binary/Soap

Serialization/Deserialization and XML Serialization/Deserialization.

There are 2 minor modifications in the implementation, though.

a) Step 1a) is modified to:

Make the class of the object to be serialized, public.

b) Step 3 is modified to:

Create an instance of a class called XmlSerializer, say Formatter,

passing the type of the instance to be parameterized, as a constructor

argument.

Sample code

Class:
// Step 1a
public class ClsXmlSerialize
{
// Step 1b – optional if there is no other constructor
 public ClsSerialize() { }
 public string sName;
 public int iDependents;
 private int iAge;
 public int Age
 {
 get{return this.iAge;}
 set{this.iAge = value;}

14

Vineet Sharda

 }
}

Namespace needed by the client code:
// Namespace containing the XmlSerializer
using System.Xml.Serialization;

Client code for serialization:
// Step 1c
ClsXmlSerialize oSerIn = new ClsXmlSerialize();
oSerIn.sName = "Eugene";
oSerIn.iDependents = 1;
oSerIn.Age = 23;
// Step 2
string sFile = @"C:/Temp/" + oSerIn.sName + ".bin";
System.IO.FileStream fsOut;
try{
 fsOut = System.IO.File.OpenWrite(sFile);
}
catch{ return; }
// Step 3
XmlSerializer Formatter = new XmlSerializer(typeof(ClsXmlSerialize));
// Step 4
try{
 Formatter.Serialize(fsOut, oSerIn);
}
finally{ fsOut.Close(); }

Serialized Output
<?xml version="1.0"?>
<ClsXmlSerialize xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <sName>Eugene</sName>
 <iDependents>1</iDependents>
 <Age>23</Age>
</ClsXmlSerialize>

iAge did not appear in the serialized output since it is a private field.

Note: Public properties, like Age in our example, appear in the XML serialized
output.

Client code for deserialization:
// Step 2
string sFile = @"C:/Temp/Eugene.xml";
System.IO.FileStream fsIn;
try{
 fsIn = System.IO.File.OpenRead(sFile);
}
catch { return; }
// Step 3
XmlSerializer Formatter = new XmlSerializer(typeof(ClsXmlSerialize));

15

Vineet Sharda

// Step 4
ClsSerialize oSerOut;
try{
 oSerOut = (ClsXmlSerialize)Formatter.Deserialize(fsIn);
}
finally { fsIn.Close(); }

So, as you can see, with two minor changes: one in marking the class

and other in instantiating the Formatter, we take our knowledge to XML

Serialization.

Advanced Scenarios in XML Serialization

Scenario 1: Prevent serialization of a field/property

Mark it with the [XmlIgnore] attribute.

Scenario 2: Serializing array or any collection

Remember, unlike the BinaryFormatter or the SoapFormatter, the

XmlSerializer is created on the basis of the class, the instance of which is

to be serialized. Now, we have to serialize an instance of a class array.

So, just replace the class with the array of the class in the instantiation of

the XmlSerializer and you will be done!

Observe that there is no change to the pattern of serialization.

The output will show thus:

<ArrayOfCls>
 <Cls>…..</ Cls >
 < Cls >…..</ Cls >
< ArrayOfCls >

Scenario 3: A field/property of a user-defined type

For the same reason as for Scenario 2, at the time of creation of the

XmlSerializer, the classes of all the fields/properties are also marked and

compiled for serialization. So, we have to do nothing special.

Scenario 4: An enum field

Nothing special needs to be done.

Scenario 5: Polymorphism

Mark the parent class with the XmlInclude attribute as:

[XmlInclude(typeof(ChildClass))]

This will allow the XmlSerializer to include the definition of the child

class in its fold, enabling it to serialize its instance. In other words,

16

Vineet Sharda

Serialization does not follow the inheritance rule. It has to be specified

explicitly that the children are ready to be serialized.

Note: As you will see from Scenarios 9 and 10, this is not a good approach. Try
making the XmlSerializer for the class which you expect to Serialize.

Tip: You should try combining a few scenarios. Some of them are given below.

Scenarios 6, 7, 8: Serializing an array or collection of a user-defined type,
an array field, or when a field is an array of user-defined elements

All these scenarios will yield the same result, and that is: stick with the 4-

step process.

Scenario 9: Polymorphism over field

Combination of Scenarios 3 and 5 – parent class should be marked with

an [XmlInclude(typeof(ChildClass))] attribute.

Scenario 9 again: Polymorphism over field

With the XmlInclude approach, the burden, of making the child class

available for serialization as the parent class, lies with the parent. This

may not always be possible. Most of the time, the classes are not even

your own. So, the alternative is to shift that burden to the field. This is

done by marking the field with the [XmlElement] attribute as:

[XmlElement(Type = typeof(ParentClass))]
[XmlElement(Type = typeof(ChildClass))]

This approach also gives us the ability to name the XML element

whatever we want, based on its type. For example, if we use the

following field in the class, the serialized output will show an oField

element when the instance is of the ParentClass type and a ChildField

element when the instance is of the ChildClass type.

[XmlElement(Type = typeof(ParentClass))]
[XmlElement(Type = typeof(ChildClass), ElementName = “ChildField”)]
public ParentClass oField;

Note: We also need to specify the XmlElement attribute for the parent class when
we shift the burden to the field.

Scenario 10: Polymorphism over an array field

Combination of Scenarios 5 and 7 – parent class should be marked with

an [XmlInclude(typeof(ChildClass))] attribute.

17

Vineet Sharda

Scenario 10 again: Polymorphism over an array field

As in the last scenario, putting the burden, of enumerating the child

classes, on the parent class is not advisable. The alternative we have in

this case is the XmlArrayItem attribute, which is applied in the same way

as XmlElement:

[XmlArrayItem (Type = typeof(ParentClass))]
[XmlArrayItem (Type = typeof(ChildClass), ElementName = “ChildField”)]
public ParentClass[] ArrField;

In the above example, using the optional ElementName property, an array

element will appear in the XML output as ParentClass when the instance

is of the ParentClass type and as ChildField when the instance is of the

ChildClass type.

Just as for the XmlElement attribute, we have to specify the XmlArrayItem

attribute for the parent class as well.

Note: In all the declarative approaches to handle polymorphism, the additional child
fields do appear in the serialized output.

Custom XML Serialization

Method 1: Declarative
We can achieve simple customization using the attributes themselves.

We have discussed the XmlIgnore, XmlInclude, XmlElement and XmlArrayItem

already. Other salient attributes and their prominent properties are

discussed here. To learn more easily, let’s distribute these attributes into

4 groups:

Group 1: Attributes over classes

Attribute Property Use

XmlInclude Type Allow polymorphism

XmlRoot Works only if the instance is the only element to be serialized

ElementName Customize the name of the element for this class

IsNullable Specify xsi:null in the serialized output if
instance is null

Namespace Specify the XML namespace of the class

XmlType Namespace Specify the XML namespace of the class

TypeName Customize the name of the element for this class

18

Vineet Sharda

Group 2: Attributes over members of an enum

Attribute Property Use

XmlEnum Name Customize the name of the value to show when a
field is of this enum type and has this particular
enum value.

Group 3: Attributes over normal members

Attribute Property Use

XmlIgnore Ignore the field from serialization

XmlAttribute Specify a field/property to show up as an attribute in the serialized
output.

AttributeName Customize the name of the attribute

Namespace Specify the XML namespace of the class of the
field

XmlElement Specify a field/property to show up as an element in the serialized
output

ElementName Customize the name of the element

IsNullable Specify xsi:null in the serialized output if
instance is null

Namespace Specify the XML namespace of the class of the
field

Type Allow polymorphism

XmlText Specify a field/property to show up as text (neither element nor
attribute) in the serialized output.

Type Allow polymorphism

Group 4: Attributes over members which are/return arrays

Attribute Property Use

XmlArray Specify the XML output for the array

ElementName Customize the name of the element

IsNullable Specify xsi:null in the serialized output if
instance is null

Namespace Specify the XML namespace of the array class

XmlArrayItem Specify the XML output for an array element

 ElementName Customize the name of the element

 IsNullable Specify xsi:null in the serialized output if
instance is null

19

Vineet Sharda

 Namespace Specify the XML namespace of the class of the
array element

 Type Allow polymorphism

Tips: 1. Only one XmlAttribute attribute can be used for one field.

2. XmlText attribute can be applied to only one member in a class;
otherwise you will get a System.InvalidOperationException at
runtime.

3. Put the field with the XmlText attribute at the very end of the class
implementation. The indentation of the XML output tends to be lost after
the output of such a field.

Let’s use these elements in the following sample code.

Sample code

Namespace needed by the classes and the client code:
// Namespace containing the Xml attributes and the XmlSerializer
using System.Xml.Serialization;

Classes:
[XmlType(TypeName="House"), XmlInclude(typeof(ClsApt))]
public class ClsXmlHouseAttribs {
 [XmlElement(ElementName = "objNumber", Type = typeof(object))]
 [XmlElement(ElementName = "strNumber", Type = typeof(string))]
 [XmlElement(ElementName = "Number", Type = typeof(int))]
 public object sNumber;

 public string sStreet;
 [XmlIgnore] public string sState;
 [XmlAttribute(AttributeName = "ZipCode")] public string sZip;

 [XmlArray(ElementName="People")]
 [XmlArrayItem(Type = typeof(object))]
 [XmlArrayItem(ElementName = "strOccupant", Type = typeof(string))]
 [XmlArrayItem(ElementName = "OccupyingPerson",
 Type = typeof(ClsPerson))]
 public object[] Occupants;

 [XmlText] public string sCity;
}

public class ClsApt : ClsXmlHouseAttribs { public string sOwner; }

public class ClsPerson { public AgeGroup AgeGrp; }

public enum AgeGroup {
 Below18, Over65, [XmlEnum(Name="EarningMember")] Between18And65
}

20

Vineet Sharda

Client code:
// Step 1c
ClsXmlHouseAttribs oSerIn = new ClsXmlHouseAttribs();
oSerIn.sNumber = "24-E"; oSerIn.sStreet = "Washington St";
oSerIn.sCity = "New York"; oSerIn.sState = "NY"; oSerIn.sZip = "10003";
// Array field with elements of different types
oSerIn.Occupants = new object[] { "Harry", new object() };

// Class to be serialized is child of the class expected to be serialized
ClsApt oSerIn2 = new ClsApt();
oSerIn2.sNumber = 241; oSerIn2.sStreet = "W St";
oSerIn2.sCity = "New York"; oSerIn2.sState = "NY";
oSerIn2.sZip = "10001"; oSerIn2.sOwner = "Bleem Inc";

// Testing the use of [XmlEnum] Attribute
ClsPerson P1 = new ClsPerson(); P1.AgeGrp = AgeGroup.Between18And65;
ClsPerson P2 = new ClsPerson(); P2.AgeGrp = AgeGroup.Over65;
oSerIn2.Occupants = new ClsPerson[] { P1, P2 };

ClsXmlHouseAttribs[] ArrHouses =
 new ClsXmlHouseAttribs[] { oSerIn, oSerIn2 };

// Step 2
string sFile = @"C:/Temp/ArrHouses.xml";
System.IO.FileStream fsOut;
try{
 fsOut = System.IO.File.OpenWrite(sFile);
}
catch { return; }
// Step 3 – XmlSerializer for an array
XmlSerializer Formatter =
 new XmlSerializer(typeof(ClsXmlHouseAttribs[]));
// Step 4
try{
 Formatter.Serialize(fsOut, ArrHouses);
}
finally { fsOut.Close(); }

Serialized Output

Here is the serialized output of the above code. Verify if this is what you

expected.

<?xml version="1.0"?>
<ArrayOfHouse xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <House ZipCode="10003">
 <strNumber>24-E</strNumber>
 <sStreet>Washington St</sStreet>
 <People>
 <strOccupant>Harry</strOccupant>
 <anyType />
 </People>New York</House>
 <House xsi:type="ClsApt" ZipCode="10001">
 <Number>241</Number>

21

Vineet Sharda

 <sStreet>W St</sStreet>
 <People>
 <OccupyingPerson>
 <AgeGrp>EarningMember</AgeGrp>
 </OccupyingPerson>
 <OccupyingPerson>
 <AgeGrp>Over65</AgeGrp>
 </OccupyingPerson>
 </People>New York<sOwner>Bleem Inc</sOwner></House>
</ArrayOfHouse>

Method 2: Programmatic
To achieve even more control over the XML serialization, make the class

implement the IXmlSerializable interface. This will entail implementing 3

functions: WriteXml, ReadXml and GetSchema.

Sample code:

Namespaces needed by the class and the client code:
// Namespace containing IXmlSerializer
using System.Xml.Serialization;
// Namespace containing XmlWriter and XmlReader
using System.Xml;

Modified class:
public class ClsXmlHouseAttribs : IXmlSerializable {
 // Same fields as before

 // Functions required by the IXmlSerializable interface
 public void WriteXml(XmlWriter writer) {
 writer.WriteAttributeString("ZipCode", this.sZip);
 if (this.sNumber is int) {
 writer.WriteElementString ("Number", this.sNumber.ToString());
 }
 else {
 writer.WriteElementString("sNumber", this.sNumber.ToString());
 }
 writer.WriteString(this.sCity);
 }

 public void ReadXml(XmlReader reader)
 { // implementation discussed later }

 public System.Xml.Schema.XmlSchema GetSchema() { return null; }
 }

Client code:
// Step 1c
// Initialize the object to be serialized – same as before
// Step 2 - XmlWriter instead of FileStream

22

Vineet Sharda

string sFile = @"C:/Temp/ArrHousesIXmlSerializable.xml";
XmlWriter fsOut;
try {
 fsOut = XmlWriter.Create(sFile);
}
catch { return; }
// Step 3 - XmlSerializer for an array – same as before
// Step 4 – Serialize – same as before

Note: A class implementing the IXmlSerializable interface cannot have any XML
attribute applied to its declaration. If you try, you will get a runtime error.

The fields can have XML attributes applied to them but these attributes will
have no effect on serialization.

Serialized output
<?xml version="1.0" encoding="utf-8"?><ArrayOfClsXmlHouseAttribs
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <ClsXmlHouseAttribs ZipCode="10003"><sNumber>24-E</sNumber>
 New York</ClsXmlHouseAttribs>
 <ClsXmlHouseAttribs ZipCode="10001"><Number>241</Number>
 New York</ClsXmlHouseAttribs>
</ArrayOfClsXmlHouseAttribs>

Code analysis

Basically, besides replacing a FileStream with an XmlWriter, you are doing

nothing but creating an XML document yourself. So, there is nothing

extraordinary to memorize here.

As in GetObjectData() for binary/soap serialization, we have complete

control over XML Serialization.

a) We pass those fields to the output that we want.

b) The names of these fields can be anything that we want.

c) If we have a field of user-defined type, then we do not have to take

care of its polymorphism since output will only be read off the fields

/ properties / functions of the superclass (the subclass is not known

to the serializable class). Passing a field of user-defined type or an

array type directly to a Write method is tricky, so avoid that.

d) Polymorphism related to serializing an array follows simple

polymorphism principles.

For simplification, we are leaving out any output related to the Occupants

field, the ClsPerson class and the AgeGroup enum. We can get a customized

output in the same manner as has been shown for the other fields.

23

Vineet Sharda

One trivially interesting portion is the GetSchema method which returns

null. Let it suffice to say that this exact implementation is advised by

Microsoft.

The real interesting portion is the Write function set available to the

XmlWriter class, which we can use, although no one stops us from writing

the entire output using its WriteValue or WriteRaw method.

Below is a list of salient Write functions of this class, which you can use

with complete ingenuity. You can find the complete list on the MSDN

website.

XmlWriter functions

Method Description

WriteAttributeString Writes an attribute with the specified value.

WriteChars Writes text one buffer at a time.

WriteComment
Writes out a comment <!--...--> containing the specified
text.

WriteElementString Writes an element containing a string value.

WriteEndAttribute Closes the last WriteStartAttribute call.

WriteEndDocument
Closes any open elements or attributes and puts the
writer back in the Start state.

WriteEndElement
Closes one element and pops the corresponding
namespace scope.

WriteRaw Writes raw markup manually.

WriteStartAttribute Writes the start of an attribute.

WriteStartDocument Writes the XML declaration.

WriteStartElement Writes the specified start tag.

WriteValue Writes a single simple-typed value.

Custom XML Deserialization

Method 1: Declarative
Since the class knows itself, the recreation of the fields based on any

criterion (attribute or element, a particular element name or another,

etc.) is a moot question.

The only scenario worth thinking about is the field that was not

serialized. Remember, when we use XmlSerializer, the burden of

managing serialization / deserialization is on this XmlSerializer rather

24

Vineet Sharda

than the class. So, the logical way to get something done after

deserialization finishes, is to create a callback or simply write the code

after calling the Deserialize method. There is a delegate available

(XmlSerializationReadCallback) for the first approach but Microsoft does

not recommend using it. The second approach is self-explanatory.

Method 2: Programmatic
We accomplish this by using the ReadXml method of the IXmlSerializable

interface. Just remember that it should be a mirror image of WriteXml.

Here is the implementation of ReadXml method for our ClsXmlHouseAttribs

class:

public void ReadXml(XmlReader reader)
{
 this.sZip = reader.GetAttribute("ZipCode");
 reader.ReadStartElement();// Read off beginning of ClsXmlHouseAttribs
 string sNumber = reader.ReadElementContentAsString();
 int iNumber;
 if (int.TryParse(sNumber, out iNumber)) {
 this.sNumber = iNumber;
 }
 else {
 this.sNumber = sNumber;
 }
 this.sCity = reader.ReadContentAsString();
 reader.ReadEndElement(); // Read off end of ClsXmlHouseAttribs
}

Advanced Scenarios

Scenario 1: A field which was not serialized

Populate that field, as you would normally do – just as in Advanced

Scenarios under Custom Deserialization.

Scenario2: Deserializing an array

Nothing special.

Scenario 3: An enum field

Since the underlying type of enum is int, reader.ReadContentAsInt followed

by conversion to enum will do our task.

Scenario 4: A field of a user-defined type

It was advised in the code analysis of WriteXml not to use any Write

method to write a field of user-defined type directly. Conversely,

25

Vineet Sharda

populate the fields of such a field by reading off the XML

elements/attributes one by one.

Scenarios 5, 6: An array field, polymorphism

Same action as for Scenario 4.

Tip: Try combining a few scenarios, as you have been doing.

Just like XmlWriter, XmlReader also has many useful functions, some of

which are given below. For the exam, knowledge of all the methods is

not necessary. Nonetheless, you can get the complete list from the

MSDN website.

XmlReader functions

Method Description

GetAttribute Gets the value of an attribute.

IsStartElement Tests if the current content node is a start tag.

LookupNamespace Resolves a namespace prefix in the current
element's scope.

MoveToAttribute When overridden in a derived class, moves to the
specified attribute.

MoveToContent If the node is not a content node, the reader skips
ahead to the next content node or end of file.

MoveToElement Moves to the element that contains the current
attribute node.

MoveToFirstAttribute Moves to the first attribute.

MoveToNextAttribute Moves to the next attribute.

Read Reads the next node from the stream.

ReadContentAs Reads the content as an object of the type
specified.

ReadContentAs<Type> Reads the content at the current position as the
type in the method name. Examples are:
ReadContentAsBoolean,
ReadContentAsDateTime,
ReadContentAsDecimal,
ReadContentAsDouble, ReadContentAsFloat,
ReadContentAsInt, ReadContentAsLong,

ReadContentAsObject, ReadContentAsString.

ReadElementContentAs Reads the current element and returns the
contents as an object of the type specified.

ReadElementContentAs<Type> Reads the current element value as the type in
the method name. Examples are:

26

Vineet Sharda

ReadElementContentAsBoolean,
ReadElementContentAsDateTime,
ReadElementContentAsDecimal,
ReadElementContentAsDouble,
ReadElementContentAsFloat,
ReadElementContentAsInt,
ReadElementContentAsLong,
ReadElementContentAsObject,

ReadElementContentAsString.

ReadElementString Helper method for reading simple text-only
elements.

ReadEndElement Checks that the current content node is an end
tag and advances the reader to the next node.

ReadInnerXml Reads all the content, including markup, as a
string.

ReadOuterXml Reads the content, including markup,
representing this node and all its children.

ReadStartElement Checks that the current node is an element and
advances the reader to the next node.

ReadString Reads the contents of an element or text node as
a string.

ReadToDescendant Advances the XmlReader to the next matching
descendant element.

ReadToFollowing Reads until the named element is found.

ReadToNextSibling Advances the XmlReader to the next matching
sibling element.

Skip Skips the children of the current node.

Method 3: Programmatic - Use WriteXml and
ReadXml directly
This method is just a slight (and easier) twist on the last method. Instead

of creating an XmlSerializer and then calling its Serialize / Deserialize

method, we can serialize an instance by calling its WriteXml method and

deserialize by calling its ReadXml method.

Note: The Dataset class implements IXmlSerializer, just as we have done,
enabling the client to call the WriteXml and ReadXml methods on its instance.

27

Vineet Sharda

Memory Sheet

Binary Serialization
class –
 public constructor,[Serializable]

BinaryFormatter.Serialize(
 Stream, Object)
 OR
Object =
BinaryFormatter.Deserialize(Stream)

Advanced Scenarios
Prevent serialization of a field –
 [NonSerialized]

Serialize an array or any
collection - Nothing special

Polymorphism/field of user-defined
type - make appropriate classes
serializable

Custom Serialization
ISerializable.GetObjectData
 SerializationInfo.AddValue,
 StreamingContext

[OnSerializing], [OnSerialized]

Custom Deserialization
ISerializable: special constructor
 SerializationInfo.GetValue,
 StreamingContext

[OnDeserializing], [OnDeserialized]

XML Serialization
class – public, public constructor

Formatter =
 new XmlSerializer(typeof(Cls))

Advanced Scenarios
Prevent serialization of a field –
 [XmlIgnore]

Serialize an array or any
collection / field of user-defined
type or array type –
 Nothing special

Polymorphism –
 [XmlInclude] on parent class

Polymorphism over field –
 [XmlElement]

Polymorphism over array field –
 [XmlArrayItem]

Other attributes:
 [XmlEnum], [XmlAttribute],
 [XmlText], [XmlArray]

Programmatic Custom XML
Serialization
IXmlSerializable.WriteXml:XmlWriter
 WriteAttributeString,
 WriteElementString, WriteString,
 WriteValue, WriteRaw

Programmatic Custom XML
Deserialization
IXmlSerializable.ReadXml: XmlReader
 GetAttribute,
 ReadElementContentAsString,
 ReadString

28

Vineet Sharda

References
http://msdn.microsoft.com/en-

us/library/ms973893.aspx#objserializ_topic5

http://msdn.microsoft.com/en-

us/library/system.runtime.serialization.streamingcontextstates.aspx

http://msdn.microsoft.com/en-

us/library/system.runtime.serialization.onserializingattribute.aspx

http://msdn.microsoft.com/en-

us/library/system.xml.xmlwriter_methods.aspx

http://msdn.microsoft.com/en-

us/library/system.xml.serialization.ixmlserializable.getschema.aspx

http://msdn.microsoft.com/en-

us/library/system.xml.xmlreader_members.aspx

http://msdn.microsoft.com/en-us/library/ms973893.aspx#objserializ_topic5
http://msdn.microsoft.com/en-us/library/ms973893.aspx#objserializ_topic5
http://msdn.microsoft.com/en-us/library/system.runtime.serialization.streamingcontextstates.aspx
http://msdn.microsoft.com/en-us/library/system.runtime.serialization.streamingcontextstates.aspx
http://msdn.microsoft.com/en-us/library/system.runtime.serialization.onserializingattribute.aspx
http://msdn.microsoft.com/en-us/library/system.runtime.serialization.onserializingattribute.aspx
http://msdn.microsoft.com/en-us/library/system.xml.xmlwriter_methods.aspx
http://msdn.microsoft.com/en-us/library/system.xml.xmlwriter_methods.aspx
http://msdn.microsoft.com/en-us/library/system.xml.serialization.ixmlserializable.getschema.aspx
http://msdn.microsoft.com/en-us/library/system.xml.serialization.ixmlserializable.getschema.aspx
http://msdn.microsoft.com/en-us/library/system.xml.xmlreader_members.aspx
http://msdn.microsoft.com/en-us/library/system.xml.xmlreader_members.aspx

