
1

Vineet Sharda

Data Security using
Encryption
Encryption classes
Beginners will feel awed and even intimidated with the amount of

material available on the internet on encryption. Let’s turn down the

noise by putting down the following tables.

These tables enumerate the classes that can be used to make sure that

any data is transferred securely. The reason that we have written these at

the outset is to get them out of our system, for now. We will be referring

to these tables as we go forward. But our focus will be on the data

security mechanisms rather than learning the names of the algorithms

and corresponding classes, at every step.

Encryption algorithm classes

 Symmetric Key Algorithm Asymmetric Key
Algorithm

Managed RijndaelManaged

AesManaged

API Wrappers DESCryptoServiceProvider

TripleDESCryptoServiceProvider

RC2CryptoServiceProvider

RSACryptoServiceProvider

Only for digital
signature

 DSACryptoServiceProvider

Hash algorithm classes

 Non-Keyed Keyed

Use these SHA512Managed
SHA384Managed
SHA256Managed

HMACSHA512

HMACSHA384

HMACSHA256

MACTripleDES

These are no SHA1Managed (160 bits) HMACSHA1

2

Vineet Sharda

longer considered
secure

RIPEMD160Managed

MD5CryptoServiceProvider

HMACRIPEMD160

HMACMD5

Randomness generator classes

Pseudorandom bytes generator RFC2898DeriveBytes

Random bytes generator RNGCryptoServiceProvider

Managed Classes Vs API Wrappers
Any class suffixed with CryptoServiceProvider is just a .Net class with

encryption functions that simply call the unmanaged Microsoft

Cryptography API encryption functions. Any class suffixed with Managed

is a .Net class with functions which encrypt data without using the

Windows API functions. Needless to say that the Managed classes should

be preferred to the CryptoServiceProvider classes.

Data Encryption
There are 2 types of algorithms used to encrypt data. These are:

Symmetric Key Algorithms and Asymmetric Key Algorithms. Here are

the steps involved in using them:

Symmetric Key Algorithm
1. One party creates a key.

2. This key is shared with the second party.

3. Each party encrypts data with this key before sending it to the other

party

4. Each party decrypts the data received from the other party, using

this key.

Asymmetric Key Algorithm
1. One party creates a key. Let’s call it private key.

2. The same party generates a second key from the first key. Let’s call it

public key.

3. The public key is shared with the second party.

3

Vineet Sharda

4. The second party encrypts data with the public key, before sending

it to the first party

5. The first party decrypts the data received from the second party,

using the private key.

Insights
1. Data transfer involving 1 asymmetric key works only in 1 direction.

This is because:

(a) Data encrypted using the public key can only be decrypted by

the private key, which only 1 party possesses.

(b) Data is never encrypted by the private key.

To make 2-way encrypted data transfer possible, 2 set of public and

private keys will be required, thus doubling the work for a key

administrator.

2. Asymmetric key generally has more number of bits. This makes the

data more secure (equivalent to rubbing more color on one’s face to

hide one’s identity). But this also slows the process of

encryption/decryption.

3. In the asymmetric key algorithms, data encrypted using one key is

decrypted using another key. This is the reason that they are called

asymmetric key algorithms. How is this done? The answer to this

question is out of the scope of this book. But you can vaguely follow

the mechanism on Wikipedia.

A simplified (although not true) explanation goes like this:

(a) Remember that the public key was created from the private

key.

(b) The algorithm has been devised in a way that at the time of

decryption, the public key can be created again and thus

decryption can be done.

4. Multiple public keys can be generated from one private key.

Continuing the simplified explanation given above, we can say that

this delays the process of decryption even more.

Because of these challenges, asymmetric key algorithms are not used to

encrypt a large amount of data. Usually they are used to transfer/share

the key of a symmetric key algorithm and then the data is exchanged

using this symmetric key algorithm.

4

Vineet Sharda

Symmetric Encryption
The phrase Data Encryption using a Symmetric Key Algorithm is usually

shortened to Symmetric Key Encryption and even to Symmetric Encryption.

That is the phrase that we will use from here on. There are 4 steps

involved in symmetric encryption. Those are:

1. Get the data to be encrypted.

2. Create a cryptor.

3. Use the cryptor to create a CryptoStream to which the encrypted data

will be written. It is called a CryptoStream because any data written to

it will be encrypted.

4. Write the data to this CryptoStream.

In terms of code, this is how we do it:

Step 1 is a simple file handling mechanism.

Step 2 involves 4 substeps:

a) Create an instance of a SymmetricAlgorithm subclass, say SymAlg.

b) Make a key, say ArrBKey – a byte array with the size equal to the

KeySize property of the SymAlg.

c) Make an IV, say ArrBIV – a byte array with the size equal to the

BlockSize property of the SymAlg.

d) Create an ICryptoTransform instance, say Cryptor, using the SymAlg, the

ArrBKey and the ArrBIV.

Step 3 involves 2 substeps:

a) Open a FileStream (or any other stream) for writing, say fsOut.

b) Create a CryptoStream instance using fsOut and Cryptor.

Step 4 is a simple file writing mechanism. The only extra step involved is

to flush the last block of data using the FlushFinalBlock method.

Sample Code

Namespaces required:
// Namespace containing Encoding
using System.Text;
// Namespace containing the SymmetricAlgorithm, RijndaelManaged,
// ICryptoTransform, CryptoStream
using System.Security.Cryptography;
// Namespace for the file handling mechanisms
using System.IO;

5

Vineet Sharda

Code:
private void EncryptFile(string sFileIn, string sFileOut) {
 // Step 1
 FileStream fsIn;
 try {
 fsIn = new FileStream(sFileIn, FileMode.Open, FileAccess.Read);
 }
 catch { return; }
 // Step 2a
 SymmetricAlgorithm SymAlg = new RijndaelManaged();
 // Step 2b
 char[] sKeyAndIV = "Some Key and IV. For key after..".ToCharArray();
 byte[] ArrBKey =
 Encoding.ASCII.GetBytes(sKeyAndIV, 0, SymAlg.KeySize / 8);
 // Step 2c
 byte[] ArrBIV =
 Encoding.ASCII.GetBytes(sKeyAndIV, 0, SymAlg.BlockSize / 8);
 // Step 2d
 ICryptoTransform Cryptor = SymAlg.CreateEncryptor(ArrBKey, ArrBIV);
 // Step 3a
 FileStream fsOut;
 try {
 fsOut = new FileStream(sFileOut, FileMode.OpenOrCreate);
 }
 catch { fsIn.Close(); return; }
 try {
 // Step 3b
 CryptoStream cs =
 new CryptoStream(fsOut, Cryptor, CryptoStreamMode.Write);
 // Step 4
 byte[] ArrBInput = new byte[1024];
 int iBytes;
 while ((iBytes = fsIn.Read(ArrBInput, 0, 1024)) > 0) {
 cs.Write(ArrBInput, 0, iBytes);
 }
 // Extra step - only for encryption, not for decryption
 cs.FlushFinalBlock();
 }
 finally { fsIn.Close(); fsOut.Close(); }
}

Tip: The CreateEncryptor/CreateDecryptor methods of a Managed class
instance create a RijndaelManagedTransform instance and of a CSP instance
create a CryptoAPITransform instance.

How to decrypt the data?

The only way to test our encryption code is to perform decryption. If we

get back what we sent, then the code is working fine. The basic 4 steps

will remain the same. Just keep in mind that now, we are reading the

encrypted file, rather than creating it. Here is how this code will look

like.

6

Vineet Sharda

private void DecryptFile(string sFileIn, string sFileOut) {
 // Step 1 – replaced by Step 3a of EncryptFile
 FileStream fsOut;
 try {
 fsOut = new FileStream(sFileOut, FileMode.OpenOrCreate);
 }
 catch { return; }
 // Step 2a
 SymmetricAlgorithm SymAlg = new RijndaelManaged();
 // Step 2b
 char[] sKeyAndIV = "Some Key and IV. For key after..".ToCharArray();
 byte[] ArrBKey =
 Encoding.ASCII.GetBytes(sKeyAndIV, 0, SymAlg.KeySize / 8);
 // Step 2c
 byte[] ArrBIV =
 Encoding.ASCII.GetBytes(sKeyAndIV, 0, SymAlg.BlockSize / 8);
 // Step 2d – CreateDecryptor instead of CreateEncryptor
 ICryptoTransform Cryptor = SymAlg.CreateDecryptor(ArrBKey, ArrBIV);
 // Step 3a – replaced by Step 1 of EncryptFile
 FileStream fsIn;
 try {
 fsIn = new FileStream(sFileIn, FileMode.Open, FileAccess.Read);
 }
 catch { fsOut.Close(); return; }
 try {
 // Step 3b – Read rather than Write
 CryptoStream cs =
 new CryptoStream(fsIn, Cryptor, CryptoStreamMode.Read);
 // Step 4 – Read rather than write
 byte[] ArrBInput = new byte[1024];
 int iBytes;
 while ((iBytes = cs.Read(ArrBInput, 0, 1024)) > 0) {
 fsOut.Write(ArrBInput, 0, iBytes);
 }
 // No need to flush
 }
 finally { fsIn.Close(); fsOut.Close(); }
}

Advanced Analyses

What is an IV?

IV stands for Initialization Vector. Paraphrasing from Wikipedia: an IV

is a byte array that is required to allow a block of data to be encrypted to

produce a unique stream independent from other streams produced by

the same encryption key, without having to go through a (usually

lengthy) re-keying process.

How the algorithm does this is beyond the scope of this book.

Note: The introduction of IV calls for updating the Symmetric Key Algorithm
subsection of the Data Encryption section. Just replace the word key with the

7

Vineet Sharda

phrase key and IV, and we will be all set.

Creating truly random Key and IV

In the encryption code, we just took a string and converted it into byte

arrays which we assigned to the Key and the IV. Then, we used the same

method for decryption. Microsoft has provided 2 better methods to

create the Key and the IV. These are discussed below. The key creation

and storage should be a separate step, followed by repeated use of the

key during both encryption and decryption. For the sake of simplicity,

we are keeping the key-creation a part of the encryption process.

Method 1:

1. At the time of encryption, call the GenerateKey method of the

SymmetricAlgorithm instance, say SymAlg. This creates a set of random

Key and IV for the SymAlg.

2. Use the overloaded CreateEncryptor method, in which the Key and the

IV are not specified. Internally, the Cryptor is created using the Key

and the IV of the SymAlg.

3. Make sure that the Key and the IV are stored to a file before

encrypting. Remember, the decrypting party needs them. Since they

are random byte arrays, we cannot regenerate them without storing

them somewhere.

The following sample code snippets replace the Step 2 of the full Sample

Codes discussed earlier.

Sample code snippet for encryption:
// Step 2a
SymmetricAlgorithm SymAlg = new RijndaelManaged();
// Steps 2b and 2c - replace
SymAlg.GenerateKey();
// Extra step – Store the key and the IV by writing to a file
// Implement this method as you like
this.StoreKeyIVToFile(SymAlg, "C:/Temp/KeyAndIV.bin");
// Step 2d – Remove the arguments
ICryptoTransform Cryptor = SymAlg.CreateEncryptor();

Sample code snippet for decryption:
// Step 2a
SymmetricAlgorithm SymAlg = new RijndaelManaged();
// Steps 2b and 2c - read the key and the IV from the file
// provided by the encrypting party
// Implement this method as you like

8

Vineet Sharda

this.ReadKeyIVFromFile(SymAlg, "C:/Temp/KeyAndIV.bin");
// Step 2d – Remove the arguments
ICryptoTransform Cryptor = SymAlg.CreateDecryptor();

Helper Code:
private void StoreKeyIVToFile(SymmetricAlgorithm SymAlg, string sFileKeyAndIV) {
 FileStream fsOut;
 try { fsOut = new FileStream(sFileKeyAndIV, FileMode.OpenOrCreate); }
 catch { return; }
 try {
 fsOut.Write(SymAlg.Key, 0, SymAlg.KeySize / 8);
 fsOut.Write(SymAlg.IV, 0, SymAlg.BlockSize / 8);
 }
 finally { fsOut.Close(); }
}

private void ReadKeyIVFromFile(SymmetricAlgorithm SymAlg, string sFileKeyAndIV)
{
 FileStream fsIn;
 try { fsIn = new FileStream(sFileKeyAndIV, FileMode.Open, FileAccess.Read); }
 catch { return; }
 try {
 byte[] ArrBKey = new byte[SymAlg.KeySize / 8];
 fsIn.Read(ArrBKey, 0, SymAlg.KeySize / 8);
 SymAlg.Key = ArrBKey;
 byte[] ArrBIV = new byte[SymAlg.BlockSize / 8];
 fsIn.Read(ArrBIV, 0, SymAlg.BlockSize / 8);
 SymAlg.IV = ArrBIV;
 }
 finally { fsIn.Close(); }
}

Method 2:

1. Create the following 4 variables:

(a) A string, say sPasswordShare.

(b) A positive integer, say iIterationsShare.

(c) A string, say sDummyShare, of more than 8 characters.

(d) A byte array derived from sDummyShare, say ArrBSalt.

2. Share the first 3 variables between the parties.

3. At both the time of encryption and decryption, create an instance of

RFC2898DeriveBytes, say rdb, using sPasswordShare, iIterationsShare and

ArrBSalt.

4. Use the GetBytes method of rdb to create two pseudorandom arrays

of bytes – ArrBKey and ArrBIV. They are called pseudorandom arrays

because they can be created with complete fidelity by providing a

unique set of sPasswordShare, iIterationsShare and ArrBSalt to an

RFC2898DeriveBytes instance. Nevertheless, RFC2898DeriveBytes assures

that the sPasswordShare and the ArrBSalt cannot be derived from these

random arrays. The higher the value of iIterationsShare, the more

difficult it is to derive these two variables.

9

Vineet Sharda

5. Use the ArrBKey and ArrBIV to create the Cryptor as done earlier.

The following sample code snippets replace the Step 2 of the full Sample

Code discussed earlier.

Sample code snippet for encryption:
// Step 2a
SymmetricAlgorithm SymAlg = new RijndaelManaged();
// Step 2b
string sPasswordShare = "Password shared between the parties.";
int iIterationsShare = 2000;
string sDummyShare = "Another string to be shared between the parties.";
byte[] ArrBSalt = Encoding.ASCII.GetBytes(sDummyShare);
Rfc2898DeriveBytes rdb = new Rfc2898DeriveBytes(sPasswordShare, ArrBSalt,
iIterationsShare);
byte[] ArrBKey = rdb.GetBytes(SymAlg.KeySize / 8);
// Step 2c
byte[] ArrBIV = rdb.GetBytes(SymAlg.BlockSize / 8);
// Step 2d
ICryptoTransform Cryptor = SymAlg.CreateEncryptor(ArrBKey, ArrBIV);

Sample code snippet for decryption:
// Step 2a
SymmetricAlgorithm SymAlg = new RijndaelManaged();
// Step 2b
string sPasswordShare = "Password shared between the parties.";
int iIterationsShare = 2000;
string sDummyShare = "Another string to be shared between the parties.";
byte[] ArrBSalt = Encoding.ASCII.GetBytes(sDummyShare);
Rfc2898DeriveBytes rdb = new Rfc2898DeriveBytes(sPasswordShare, ArrBSalt,
iIterationsShare);
byte[] ArrBKey = rdb.GetBytes(SymAlg.KeySize / 8);
// Step 2c
byte[] ArrBIV = rdb.GetBytes(SymAlg.BlockSize / 8);
// Step 2d
ICryptoTransform Cryptor = SymAlg.CreateDecryptor(ArrBKey, ArrBIV);

Note: 1. Instead of sharing the password, the iteration count and the dummy
string, you could have shared the key and the IV by first storing them to
a file, as done in Method 1.

2. Another class called PasswordDeriveBytes also does this for us. Its
constructor does not have a parameter for the iteration count.

Asymmetric Encryption
Sadly, the technique used for asymmetric encryption is different from

that for the symmetric encryption. But the good part is that the

technique is very easy – as easy as calling the Encrypt method. Since

10

Vineet Sharda

Microsoft is cutting us a slack here, let’s use that in creating an almost

complete scenario for asymmetric encryption.

Here is how it goes:

1. Party 1 creates a key and stores both its public and the private

parameters in one file, say AsymKey.xml and only its public parameters

in another file, say AsymKey.xml.public.

2. Party 1 provides the AsymKey.xml.public to Party 2, usually through a

channel different from the one through which the data is to be

transferred. We do not have to code for this.

3. Party 2 encrypts the data using the AsymKey.xml.public file.

4. Party 1 decrypts the data using the AsymKey.xml file.

Action 1 consists of 3 steps:

1. Create an instance of AsymmetricAlgorithm subclass, say AsymAlg.

2. Call the ToXmlString method of AsymAlg with the argument

includePrivateParameters as true. This will create an XML string

containing both the public and the private parameters of the key.

This XML should be stored in a file.

3. Call the ToXmlString method of AsymAlg with the argument

includePrivateParameters as false. This will create an XML string

containing only the public parameters of the key. This XML should

be stored in a separate file.

Action 3 consists of 5 steps:

1. Get the data to be encrypted.

2. Create an instance of AsymmetricAlgorithm class, say AsymAlg.

3. Read the file containing only the public parameters into a string.

Call the FromXmlString method of AsymAlg by passing this string. This

will configure AsymAlg with the public key.

4. Create the output stream.

5. Encrypt the data and write to the appropriate output stream.

Step 5 needs the following explanation:

a) Asymmetric encryption can only work on a data which has size

equal to or less than the size of the key minus the padding that the

algorithm is going to put on the data. As a thumb rule, the padding

takes up 64 bytes of space.

11

Vineet Sharda

b) There are 2 types of padding: PKCS (default) and OAEP (for

Microsoft Windows XP or higher). The PKCS padding can be used

by passing false as the second argument of the Encrypt method and

the OAEP padding can be used by passing true as the second

argument of the Encrypt method.

Action 4 is just a mirror image of Action 3.

Sample code:

Namespaces:
using System.Text;
using System.Security.Cryptography;
using System.IO;

Action code:

Action 1
// Includes Step 1
StoreAsymKeyToFile(new RSACryptoServiceProvider(), C:\Temp\AsymKey.xml");

Action 3
EncryptFileAsym("C:\Temp\FileToEncode.txt", "C:\Temp\EncodedFile.enc",
"C:\Temp\AsymKey.xml.public");

Action 4
EncryptFileAsym("C:\Temp\EncodedFile.enc", "C:\Temp\SameAsOriginal.txt",
"C:\Temp\AsymKey.xml");

Step code:
private void StoreAsymKeyToFile(
 AsymmetricAlgorithm AsymAlg, string sFileAsymKey
) {
 StreamWriter swKey;
 try { swKey = new StreamWriter(sFileAsymKey); }
 catch { return; }
 try
 {
 // Step 2
 swKey.Write(AsymAlg.ToXmlString(true));
 swKey.Close();
 // Step 3
 swKey = new StreamWriter(sFileAsymKey + ".public");
 swKey.Write(AsymAlg.ToXmlString(false));
 }
 finally { swKey.Close(); }
}

12

Vineet Sharda

private void ReadAsymKeyFromFile(
 AsymmetricAlgorithm AsymAlg, string sFileKey
) {
 StreamReader srKey;
 try { srKey = new StreamReader(sFileKey); }
 catch { return; }
 try {
 AsymAlg.FromXmlString(srKey.ReadToEnd());
 }
 finally { srKey.Close(); }
}

private void EncryptFileAsym(
 string sFileIn, string sFileOut, string sFilePublicKey
) {
 // Step 1
 FileStream fsIn;
 try {
 fsIn = new FileStream(sFileIn, FileMode.Open, FileAccess.Read);
 }
 catch { return; }
 // Step 2 - Encrypt function is not available with
 // AsymmetricAlgorithm class, so use RSACryptoServiceProvider
 RSACryptoServiceProvider AsymAlg = new RSACryptoServiceProvider();
 // Step 3 - uses FromXmlString
 this.ReadAsymKeyFromFile(AsymAlg, sFilePublicKey);
 // Step 4
 FileStream fsOut;
 try {
 fsOut = new FileStream(sFileOut, FileMode.OpenOrCreate);
 }
 catch { fsIn.Close(); return; }
 try {
 int iBytes = AsymAlg.KeySize / 8 - 64;
 byte[] ArrBInput = new byte[iBytes];
 while ((iBytes = fsIn.Read(ArrBInput, 0, iBytes)) > 0) {
 ArrBInput = this.GetPortion(ArrBInput, 0, iBytes);
 // Step 5
 byte[] ArrBTemp = AsymAlg.Encrypt(ArrBInput, true);
 fsOut.Write(ArrBTemp, 0, ArrBTemp.Length);
 }
 }
 finally { fsIn.Close(); fsOut.Close(); }
}

private void DecryptFileAsym(
 string sFileIn, string sFileOut, string sFileFullKey
) {
 // Steps 1, 2, 3, 4 same as in EncryptFileAsym
 try
 {
 byte[] ArrBInput = new byte[AsymAlg.KeySize / 8];
 while (fsIn.Read(ArrBInput, 0, AsymAlg.KeySize / 8) > 0)
 {
 // Step 5

13

Vineet Sharda

 byte[] ArrBTemp = AsymAlg.Decrypt(ArrBInput, true);
 fsOut.Write(ArrBTemp, 0, ArrBTemp.Length);
 }
 }
 finally { fsIn.Close(); fsOut.Close(); }
}

Helper Code:
private byte[] GetPortion(byte[] ArrObj, int iOffset, int iLength) {
 if (ArrObj == null) return ArrObj;
 if (iLength < 0 || ArrObj.Length <= iOffset + iLength) {
 if (iOffset == 0) return ArrObj;
 iLength = ArrObj.Length - iOffset;
 }
 MemoryStream memstrm = new MemoryStream();
 memstrm.Write(ArrObj, iOffset, iLength);
 return memstrm.ToArray();
}

Advanced Analyses

Parameters of Asymmetric Algorithm

The only difficult part compared to the code for symmetric encryption is

the storage of the key. The key is not even a property of AsymAlg. As a

matter of fact, the key has so many parts that it is called Parameters, as in

RSAParameters (a struct) or CspParameters (a class). Even these parameters

cannot be accessed by some simple property. The only way to get or set

them in code is to use the ExportParameters or the ImportParameters

methods of an AsymmetricAlgorithm instance. The other way is of course

by using the ToXmlString and the FromXmlString methods.

Let’s take a quick look at a set of asymmetric parameters. Here is a fake

though representative one:

<RSAKeyValue>
 <Modulus>
xlfEkovHbtxcKDP/THmqMeKMMDYmR4I+ZW2DXoGe+UD3QQZ8VAUShrKJ9X3TFDI2X0XCs+VTJ
DhyK49bFfVOcKMp4ZzXaVBZRnI2Q920EcyVFtuR95yVQdU8EZfyNSvDyavEebnA1heoMWoPhv
MRNwYp0hhDnYvopAQVERdt8Nc=</Modulus>
 <Exponent>ABCD</Exponent>
 <P>
7BH2OkjwTIw0Im1XxLnJxq8HkFSBvj7J8dDMqD53crvdw9iu5sDOSW9oXR0Da22qml8/Z8WkO
INGbSaNskdOTQ==</P>
 <Q>
2mHnlUWXUcOEQJfLXRla+THxK44pvTML0vrVrdjvwAC5D5tdHwxWvt0T+SPneOsQGcLwXXdam
yuQUYs1im11sw==</Q>
 <DP>
6YueudgbmBu2FbeB8Ryz8Mp/+Msd6kfBCGc3h9MB44LfwDA8EBL1+L0xxahFEaXP8hH0bXiZD
y0KJDzWO1k8oQ==</DP>
 <DQ>
m5h90WF3gnr2X1K3nKrcWNDHEJyjyUV6fAOh7CA2URhxxKaBb/4irS7Z+9g2y5u1M/JUVFOc/
5MLp44AG1YR3w==</DQ>

14

Vineet Sharda

 <InverseQ>
OwrEZICTxPyqql0U4KuyE6DCypkyxfcLHHQtxWIzF++USnT0M15L8RgtpP+mvwhvToBUZO+lO
P4gMINl8GTFIw==</InverseQ>
 <D>
J1IeSOAcq/piyW/B251VIGHjRrPguyhhvL9tm9SFFxoGlgvetsqBNnfmePaYUVha52/fViC8v
p1/qokQbeo6ig8JQaGiuFpKQEZkkGV1GMAxUDREANsY+//031Oht8Ol2kjUPUvyY2C+MyfZai
WGxBmIh6j9UAV9g+AzjyfMdek=</D>
</RSAKeyValue>

The Modulus and the Exponent constitute the public key. The rest

constitute the private key.

KeySize

1. The main difference between the algorithms listed in the tables of

classes is the size of their keys. The bigger the KeySize, the more

secure is the encryption.

2. KeySize is always in bits.

3. The KeySize can be configured for some algorithms like

RijndaelManaged and RSACryptoServiceProvider.

Hierarchy

Let’s have a look at the table of encryption classes. Each encryption class

inherits from a class, the name of which can be arrived at by removing

the Managed or the CryptoServiceProvider suffix. Those parent classes

themselves inherit from the SymmetricAlgorithm or the AsymmetricAlgorithm

abstract class, as appropriate.

Hashing
Hashing is a quick way of testing if a piece of data sent by a party was

tampered on the way to the second party. This is done by computing out

a very small piece of data from a larger data, using a complex algorithm.

Every time this algorithm is applied to a particular data, the result will

be the same small piece of data. This small piece of data is called the hash

of the larger data.

Logical Steps
1. The 2 parties agree on the hash algorithm that will be used.

2. Party 1 computes the hash of the data to be sent, using this

algorithm.

15

Vineet Sharda

3. Party 1 sends the data to Party 2.

4. Party 1 sends the hash to Party 2. This could also have been done in

a recent or distant past, or in the case of a password, Party 2 might

have calculated and stored the hash in the past.

5. Party 2 computes the hash of the received data, using the same

algorithm.

6. Party 2 compares the computed and the received hashes. In case

they are identical, Party 2 processes the data. In case they are

different, Party 2 takes an appropriate action like alerting Party 1 or

at least not processing the data.

Why do we need Hashing?

Data integrity

Let’s say some data is sent across as an email or as a web page, followed

by the hash of the same data. With the use of the above mentioned

process, the data integrity over the internet can be checked. The small

size of the hash is usually an assurance that the hash itself will be

transferred fine over the internet. Even if the hash is broken, and thus

the data integrity is believed to be broken, Party 2 can ask Party 1 to

send the data once again.

Password security

Party 1 can have some password to access some resource of Party 2. At

the time of creation of the password, Party 2 can create its hash and store

this hash. At the time of the use of the password, Party 2 can hash the

sent password and compare it against the stored hash. If they are

identical, Party 1 can be allowed the access to the resource. Thus, even

the password administrator will never know any password.

Security

Hashing can be used to check if a data has been tampered by a hacker.

This will be explained in the Keyed Hashing section.

16

Vineet Sharda

What is there to program then?
The only program that is to be written is to compute the hash, which is

actually easier done than said! That’s all that will be executed by the two

parties, followed by a byte-array-comparison by Party 2.

Sample code

Namespaces:
using System.Text;
using System.Security.Cryptography;
using System.IO;

Code:
private void HashFile(string sFileIn, string sFileOut) {
 // Step 1
 FileStream fsIn;
 try {fsIn = new FileStream(sFileIn, FileMode.Open, FileAccess.Read);}
 catch { return; }
 // Step 2
 HashAlgorithm HshAlg = new SHA512Managed();
 // Step 3
 FileStream fsOut;
 try { fsOut = new FileStream(sFileOut, FileMode.OpenOrCreate); }
 catch { fsIn.Close(); return; }
 try {
 // Step 4
 byte[] ArrBHsh = HshAlg.ComputeHash(fsIn);
 fsOut.Write(ArrBHsh, 0, ArrBHsh.Length);
 }
 finally { fsIn.Close(); fsOut.Close(); }
}

A Sample Hash
⋕㫗僲 䠹쐬打ꐊ 穏偠㢩 췕＋牵⁖ᔧｺ連䜕ª⁖䠌䫙뿥⁖皘疁欝螅

Code analyses

1. ComputeHash has a few overloads. We can either read the entire file

into a byte array and then pass it as an argument, or we can pass a

FileStream as an argument, as in the Sample Code.

2. If you run the code with the same input but a different output file,

the hash will remain the same as the above.

17

Vineet Sharda

3. The output file will be of the same size as the hashing algorithm

name. For example, in case of the above code, the hash file is 512 bits

(64 bytes) in size.

Tip: The last computed hash is stored in the Hash property of a HashAlgorithm
instance.

Keyed Hashing
The hashing process that we described above is used mainly to check the

data integrity. It does not protect us from a hacker. The process can be

easily replicated by a hacker. He/she can then send a tampered data and

its hash. The hash calculated by Party 2 will match the hash for the

tampered data (GIGO).

The solution is that the two parties exchange a secret key and use that to

first hash the data followed by encrypting the hash. Simply replacing the

HashAlgorithm with the KeyedHashAlgorithm and providing it with a key

does this for us.

Code snippet
private void KeyedHashFile(string sFileIn, string sFileOut) {
 // Step 1 – same as in Hashing
 // Step 2a – creation of a key
 string sPasswordShare = "Password shared between the parties.";
 int iIterationsShare = 2000;
 string sDummyShare =
 "Another string to be shared between the parties.";
 byte[] ArrBSalt = Encoding.ASCII.GetBytes(sDummyShare);
 Rfc2898DeriveBytes rdb =
 new Rfc2898DeriveBytes(sPasswordShare,ArrBSalt,iIterationsShare);
 byte[] ArrBKey = rdb.GetBytes(512);
 // Step 2b – KeyedHashAlgorithm instead of HashAlgorithm
 KeyedHashAlgorithm HshAlg = new HMACSHA512(ArrBKey);
 // Steps 3 and 4 – same as in Hashing
}

Code analysis

All that we have done is added the code to create a key and provided it

to a KeyedHashAlgorithm constructor. We could also have created a

KeyedHashAlgorithm instance and then assigned the key to its Key property.

We can use any of the methods we explored in the Symmetric Encryption

section, to create a key.

18

Vineet Sharda

Hierarchy

Let’s have a look at the table of classes. Each hash algorithm class

inherits from a class, the name of which can be arrived at by removing

the Managed or the CryptoServiceProvider suffix. Those parent classes

themselves inherit from the HashAlgorithm or the KeyedHashAlgorithm

abstract class, as appropriate. The KeyedHashAlgorithm class inherits from

the HashAlgorithm class.

Digital Signature

What is a digital signature?
A digital signature is a byte array generated for some data, using this

data and a key.

That sounds like a keyed hash. Is it different?
There is 1 Yes and 2 No’s to this question.

1. Yes: the data is hashed and the hash is encrypted as in keyed

hashing.

2. No: the difference is the same as that between symmetric and

asymmetric key algorithms.

In a keyed hash, a private key is used to create and recreate (for

verification) the hash. In a digital signature, the private key is used

to create the signature and a public key is used to verify the

signature. As a matter of fact, digital signatures are actually created

and verified using asymmetric key algorithms.

3. No: A keyed hash for a piece of data will always be the same. On the

other hand, a digital signature created for the same piece of data will

be different, every time it is created. Nevertheless, all these

signatures will verify correctly.

Logical steps
1. The 2 parties agree on the asymmetric algorithm that will be used.

2. Party 1 creates a private and a public key. It shares the public key

with Party 2.

3. Party 1 creates a digital signature of the data to be sent, using the

algorithm agreed upon, which itself is created using the private key.

19

Vineet Sharda

4. Party 1 sends the data and the digital signature to Party 2.

5. Party 2 verifies the data with the digital signature using the

algorithm agreed upon, which itself is created using the public key.

As you can see, these steps are simply a combination of keyed hashing

and the asymmetric encryption/decryption processes.

Sample code:

Namespaces:
using System.Text;
using System.Security.Cryptography;
using System.IO;

Action code:
StoreAsymKeyToFile(new DSACryptoServiceProvider(),
“C:\Temp\DigitalSignatureAsymKey.xml”);

SignFile("C:\Temp\FileToSign.txt", "C:\Temp\SignatureFile.txt",
“C:\Temp\DigitalSignatureAsymKey.xml”);

VerifySignFile("C:\Temp\FileToSign.txt", "C:\Temp\SignatureFile.txt",
“C:\Temp\DigitalSignatureAsymKey.xml.public”);

Step code:
// Implementation of the StoreAsymKeyToFile and the ReadAsymKeyFromFile
methods is the same as in the Asymmetric Encryption section.

private void SignFile(
 string sFileIn, string sFileSignature, string sFilePrivateKey
) {
 // Step 1
 byte[] ArrBInput;
 try { ArrBInput = File.ReadAllBytes(sFileIn); }
 catch { return; }
 // Step 2 – SignData function is not available with
 // AsymmetricAlgorithm class, so use DSACryptoServiceProvider
 DSACryptoServiceProvider AsymAlg = new DSACryptoServiceProvider();
 // Step 3 - uses FromXmlString
 this.ReadAsymKeyFromFile(AsymAlg, sFilePrivateKey);
 //Step 4
 byte[] ArrBSign = AsymAlg.SignData(ArrBInput);
 try {
 //Step 5
 File.WriteAllBytes(sFileSignature, ArrBSign);
 }
 finally { }
}

20

Vineet Sharda

private bool VerifySignFile(
 string sFileIn, string sFileSignature, string sFilePubOrPvtKey
) {
 // Steps 1 & 2 same as in SignFile
 // Step 3 - uses FromXmlString
 this.ReadAsymKeyFromFile(AsymAlg, sFilePubOrPvtKey);
 //Step 4
 byte[] ArrBSign;
 try { ArrBSign = File.ReadAllBytes(sFileSignature); }
 catch { return false; }
 //Step 5
 return AsymAlg.VerifyData(ArrBInput, ArrBSign);
}

Advanced Analyses

Comparing with Asymmetric Encryption

Although you should not confuse yourselves by comparing the

asymmetric encryption with the digital signature, you may be inclined

to do so. Just remember that in the asymmetric encryption, output

(encrypted output) is created using the public key but in the digital

signature, the output (digital signature) is created using the private key.

Similarly, the encrypted output can only be decrypted by using the

private key but the digital signature can be verified by either the public

or the private key.

Split Hashing and Signing

Remember, SignData creates a hash and then creates a digital signature

for this hash. We can split this functionality. That is, we can create a hash

with an algorithm of our choice and then use the SignHash method of an

AsymmetricAlgorithm instance, say AsymAlg, to create the signature.

Similarly, we can verify the signature of a hash, by using the VerifyHash

method of the AsymAlg. The first argument in both the cases is of course

the hash and the second argument is the string representation of the

algorithm used to create that hash.

RSACryptoServiceProvider takes it a step further. It forces a programmer to

provide his/her own hash algorithm as an argument to the SignData and

the VerifyData methods. This algorithm has to be passed as the last

argument of these methods.

Tip: Provide a non-keyed hash algorithm for a digital signature. Otherwise we will
have to manage the keys of the hash algorithm in addition to the key for the
asymmetric algorithm.

21

Vineet Sharda

A SignData Overload

An overload of SignData takes a FileStream as its argument. We can pass

the FileStream for the file for which the digital signature is to be created

to this method.

RandomNumberGenerator
We go to lengths to generate randomness in our keys. For a

SymmetricAlgorithm, we use the GenerateKey method. Or we use the

RFC2898DeriveBytes to create a pseudorandom key. Microsoft even does

this for us at the time of instantiation of any encryption algorithm.

Randomness is something which is difficult to analyze. This thought

gives strength to the philosophy of encryption. In order to provide a

programmer with the strength of this thought, Microsoft has created a

class called RNGCryptoServiceProvider, which inherits from the

RandomNumberGenerator abstract class.

You can use the GetBytes or the GetNonZeroBytes method of an

RNGCryptoServiceProvider instance to get a randomized byte array. You

can use this array to generate a truly random set of large, small or

normal numbers, as required.

Sample code
private void GetRandomNumbers(
 ref System.Collections.Generic.List<int> LstSmallRandomNums,
 ref System.Collections.Generic.List<int> LstNormalRandomNums,
 ref System.Collections.Generic.List<int> LstLargeRandomNums, int iLen
) {
 RNGCryptoServiceProvider rc = new RNGCryptoServiceProvider();
 byte[] ArrBRandom = new byte[iLen];
 rc.GetNonZeroBytes(ArrBRandom);
 for (int iTmp = 0; iTmp < ArrBRandom.Length - 1; iTmp++) {
 LstSmallRandomNums.Add(ArrBRandom[iTmp] % 5);
 LstNormalRandomNums.Add(ArrBRandom[iTmp]);
 LstLargeRandomNums.Add(ArrBRandom[iTmp] * ArrBRandom[iTmp + 1]);
 }
}

ProtectedData and ProtectedMemory
You can use the ProtectedData class to encrypt some data, which you can

then store in a file. Its methods Protect (to encrypt) and Unprotect (to

decrypt) take a byte array to encrypt/decrypt, an additional byte array to

22

Vineet Sharda

make the encryption stronger and a DataProtectionScope enum of

CurrentUser or LocalMachine.

Similarly, you can use the ProtectedMemory class to encrypt some variable

in the memory. Its methods Protect and Unprotect take a byte array to

encrypt/decrypt and a MemoryProtectionScope enum of SameLogon or

SameProcess or CrossProcess.

Both these classes are in the System.Security.dll.

The differences between these classes are:

1. ProtectedData methods work on a copy of the byte array to be

encrypted/decrypted, whereas ProtectedMemory works on the input

byte array itself.

2. ProtectedMemory only works on the byte array the length of which is a

multiple of 16.

CryptoConfig
CryptoConfig is a factory class used to create a cryptography class from a

string. Here is a good example.

DSACryptoServiceProvider DsaAlg =
 (DSACryptoServiceProvider)((new CryptoConfig).CreateFromName("DSA"))

23

Vineet Sharda

Memory Sheet

Symmetric Encryption
Cryptor =
 SymAlg.CreateEncryptor(
 ArrBKey, ArrBIV)
cs = new CryptoStream(
 fStrmOut, Cryptor,
 CryptoStreamMode.Write)
while(..){ cs.Write(..) }
cs.FlushFinalBlock

Symmetric Decryption
Cryptor =
 SymAlg.CreateDecryptor(
 ArrBKey, ArrBIV)
cs = new CryptoStream(
 fStrmIn, Cryptor,
 CryptoStreamMode.Read)
while(cs.Read(..)){..}

Asymmetric Encryption
FromXmlString or ImportParameters
for Key

Encrypt method

Asymmetric Decryption
Decrypt method

Hashing
ArrBHash =
 HashAlgorithm.ComputeHash(
 fStrmIn)

KydHashAlg =new HMACSHA512(ArrBKey)
ArrBHsh =
 KydHashAlg.ComputeHash(fStrmIn)

Digital Signature
ArrBSign =
 AsymmetricAlgorithm.SignData(
 ArrBInput)

bMatch =
 AsymmetricAlgorithm.VerifyData(
 ArrBInput, ArrBSign)

ArrBSign =
 AsymmetricAlgorithm.SignHash(
 ArrBHash, “SHA512”)

bMatch =
 AsymmetricAlgorithm.VerifyHash(
 ArrBHash, “SHA512”, ArrBSign)

Random Bytes
Instantiation of symmetric or
asymmetric algorithms

SymmetricAlgorithm.GenerateKey()

(new Rfc2898DeriveBytes(
 sPasswordShare, ArrBSalt,
 iIterationsShare)
).GetBytes(iBytes)

(new PasswordDeriveBytes(
 sPasswordShare, ArrBSalt)
).GetBytes(iBytes)

(new RNGCryptoServiceProvider()
).GetBytes(ArrB)
or .GetNonZeroBytes(ArrB)

ProtectedData & ProtectedMemory
ProtectedMempry takes multiples of
16 bytes and does not make a copy

CryptoConfig
(new CryptoConfig
).CreateFromName("TripleDES")

24

Vineet Sharda

References
http://msdn.microsoft.com/en-us/library/92f9ye3s(VS.71).aspx

http://en.wikipedia.org/wiki/Initialization_vector

http://msdn.microsoft.com/en-

us/library/system.security.cryptography.rsacryptoserviceprovider_mem

bers(VS.71).aspx

http://msdn.microsoft.com/en-

us/library/system.security.cryptography.cryptoconfig_members.aspx

http://msdn.microsoft.com/en-

us/library/system.security.cryptography.protecteddata.aspx

http://msdn.microsoft.com/en-

us/library/system.security.cryptography.protectedmemory.aspx

http://msdn.microsoft.com/en-us/library/92f9ye3s(VS.71).aspx
http://en.wikipedia.org/wiki/Initialization_vector
http://msdn.microsoft.com/en-us/library/system.security.cryptography.rsacryptoserviceprovider_members(VS.71).aspx
http://msdn.microsoft.com/en-us/library/system.security.cryptography.rsacryptoserviceprovider_members(VS.71).aspx
http://msdn.microsoft.com/en-us/library/system.security.cryptography.rsacryptoserviceprovider_members(VS.71).aspx
http://msdn.microsoft.com/en-us/library/system.security.cryptography.cryptoconfig_members.aspx
http://msdn.microsoft.com/en-us/library/system.security.cryptography.cryptoconfig_members.aspx
http://msdn.microsoft.com/en-us/library/system.security.cryptography.protecteddata.aspx
http://msdn.microsoft.com/en-us/library/system.security.cryptography.protecteddata.aspx
http://msdn.microsoft.com/en-us/library/system.security.cryptography.protectedmemory.aspx
http://msdn.microsoft.com/en-us/library/system.security.cryptography.protectedmemory.aspx

